Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity.

نویسندگان

  • S Y Lin
  • M Constantine-Paton
چکیده

Electrophysiological studies have documented the existence of synapses showing only NMDA ionotropic glutamate receptor function that are therefore presumably "silent" at resting membrane potentials. Silent synapses are more prevalent in young than in older neurons, and NMDA receptor activity at such contacts may facilitate the appearance of functional AMPA receptors. However, it is uncertain whether such silent synapses actually have a function in young neurons independent of AMPA receptor induction. Using a newly characterized culture system for neurons from larval Xenopus tecta, we show that blocking NMDA receptors or preventing changes in intracellular free Ca2+ concentration with BAPTA AM significantly increases neurite sprouting and elongation in contacted but not in isolated neurons. Blocking AMPA/KA receptors or Na+-dependent action potentials does not mimic this effect. Moreover, in these young neurons, NMDA receptor-dependent Ca2+ responses to glutamate measured with confocal fluo-3 imaging are retained during AMPA/KA receptor blockade. The data suggest that many of the young contacts in these cultures are active even though they use only NMDA ionotropic glutamate receptors. Calcium influx through the NMDA receptor at these contacts seems to reduce neurite motility. This effect should lead to the accumulation of glutamatergic inputs on NMDA receptor-expressing dendrites, which could facilitate the onset of AMPA/KA receptor function and the action potential-dependent phase of synaptogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses.

Recently, NMDA receptors (NMDARs) have been implicated in a cell contact-dependent suppression of sprouting in cultured Xenopus tectal neurons during an early period when neither AMPA/kainate (KA) receptors nor action potentials play a prominent role in cell-cell communication. We asked how the NMDA receptors function in the absence of the depolarizing effect of AMPA/KA receptor activity. We sh...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Protective effect of crocin on bisphenol A - induced spatial learning and memory impairment in adult male rats: Role of oxidative stress and AMPA receptor

Objective(s): Bisphenol A (BPA), a xenoestrogenic endocrine disrupting agent, is widely used in the production of polycarbonate plastics and has potential adverse effects on the developing nervous system, memory and learning abilities. The protective effect of the crocin, an important active constituent in Crocus sativus L, on memory impairment induced by BPA in rat wa...

متن کامل

Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors

Glutamate is the most abundant excitatory neurotransmitter in the brain, and distinct classes of glutamate receptors coordinate synaptic transmission and spike generation upon various levels of neuronal activity. However, the mechanisms remain unclear. Here, we found that loss of synaptic AMPA receptors increased kainate receptor activity in cerebellar granule cells without changing NMDA recept...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 10  شماره 

صفحات  -

تاریخ انتشار 1998